Scalable Detection of Spatiotemporal Encounters in Historical Movement Data

نویسندگان

  • Peter Bak
  • Mattias Marder
  • Sivan Harary
  • Avi Yaeli
  • Harold J. Ship
چکیده

The widespread adoption of location-aware devices is resulting in the generation of large amounts of spatiotemporal movement data, collected and stored in digital repositories. This forms a fertile ground for domain experts and scientists to analyze such historical data and discover interesting movement behavioral patterns. Experts in many domains, such as transportation, logistics and retail, are interested in detecting and understanding movement patterns and behavior of objects in relation to each other. Their insights can point to optimization potential and reveal deviations from planned behavior. In this paper, we focus on the detection of the encounter patterns as one possible type in movement behavior. These patterns refer to objects being close to one another in terms of space and time. We define scalability as a core requirement when dealing with historical movement data, in order to allow the domain expert to set parameters of the encounter detection algorithm. Our approach leverages a designated data structure and requires only a single pass over chronological data, thus resulting in highly scalable and fast technique to detect encounters. Consequently, users are able to explore their data by interactively specifying the spatial and temporal windows that define encounters. We evaluate our proposed method as a function of its input parameters and data size. We instantiate the proposed method on urban public transportation data, where we found a large number of encounters. We show that single encounters emerge into higher level patterns that are of particular interest and value to the domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between the Kazerun (Iran) and the North Anatolian (Turkey) fault systems in fault interaction and seismicity migration based on the spatiotemporal analysis of earthquakes

The Kazerun Fault System (KFS) is a right-lateral strike slip fault system in the middle part of the Zagros seismogenic zone in Iran. Historical and instrumental earthquake data catalogs of this fault system show good evidence of fault interactions and seismic migrations. This study provides evidence for the migration of seismicity in the middle part of the Zagros region along the segments of t...

متن کامل

Visualization of Simultaneous Localization and Mapping using SVG Non Destructive Observations and Visualization of Robotic System

Robotic system often use simultaneous localization and mapping method in their operations. Most of the calculation stored as a nested array with multiple level and dimension. SLAM data contains robot movement, object detection and relation between them. This system visualize SLAM data into a map containing robot historical position, object position and relation between object and robot that sho...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

Spatiotemporal Kriging with External Drift

In statistics it is often assumed that sample observations are independent. But sometimes in practice, observations are somehow dependent on each other. Spatiotemporal data are dependent data which their correlation is due to their spatiotemporal locations.Spatiotemporal models arise whenever data are collected across bothtime and space. Therefore such models have to be analyzed in termsof thei...

متن کامل

Spatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization

The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2012